close
微軟開發的聊天機器人ChatGPT,
在11月30日正式開放試用,
僅僅五天就衝破百萬用戶,
甚至創下歷史上全新的紀錄,
在兩個月內突破一億用戶。非常驚人。
這個由OpenAI釋出的超夯人工智慧工具究竟是什麼?為何能有此表現?
當人工智慧研究實驗室OpenAI釋出對話式語言模型ChatGPT,因為它的用途廣泛、效果強大,因此迅速走紅。
根據官網的介紹,ChatGPT可以跟使用者對話、回答問題,若是使用者的論點中有錯誤,它也能指正。
目前開放給民眾免費使用的ChatGPT還在測試階段,不過已經有許多人發掘出它的有趣應用,除了對話以外,有學生拜託它回答大學理論課的申論題,也有工程師麻煩它寫程式,或者要求它吟詩作賦,而ChatGPT來者不拒地照辦—品質還驚人地好。
聊天機器人ChatGPT被讚萬能,唯獨這指令一出會被立即拒絕。
其實,ChatGPT並不是真的有求必應,若使用者輸入的內容和仇恨言論、暴力、犯罪等主題有關,ChatGPT不會做出回答,還會提醒使用者這違反了平台的規範。
ChatGPT的用法和其橫空出世的脈絡及現況,帶你一次看。完整更新。
除了寫作業、寫程式以外,ChatGPT還有更多元的有趣應用。
ChatGPT。針對「有什麼使用人工智慧產出文字的酷方法」,ChatGPT「稍作思考」後,也針對自身的用途,提供寶貴建議,以下為ChatGPT產生的文字:
生成創意文字,甚至吟詩作對:人工智慧演算法可以訓練大量文字,如書籍和詩歌,並可以生成原創的故事或詩歌。
翻譯:人工智慧演算法可以訓練翻譯一種語言到另一種語言,讓不同語言的人更容易溝通。
幫你抓重點摘要:人工智慧演算法可以用來自動摘要長文件,讓人們更容易快速理解主要思想。
例如,有人想了解全球第二大加密交易所FTX為何破產?
貼給ChatGPT一份研究報告摘要後,它馬上可以簡略回答出,「根據資料,由創辦人SBF所成立的FTX和Alameda兩間公司,中間似乎有密切的關係。而且大量FTT代幣被這兩間公司控制,讓人對他們的獨立性產生懷疑。」這個重要結論!
幫你省去看艱深報告內容的大筆時間。
寫個人化的電子郵件:人工智慧演算法可以訓練生成個人化的電子郵件,根據人們的興趣和喜好。
代工小編,幫你寫新聞:人工智慧演算法可以訓練生成特定主題的新聞文章,讓新聞組織能夠快速製作各種主題的內容。
其實,ChatGPT能派上用場的地方遠遠不止如此,網友也發現有隱藏版用法可以語音學習。就創意而言,它確實能夠接收使用者給定的題目與人物寫出故事,當起編劇來。
具體來說它能夠幫助創意工作者針對特定的場景發想點子,例如請ChatGPT產出一段穿越劇故事,都辦得到。
另外,ChatGPT也是個點子王。突然失業了怎麼辦?它還可以幫你腦力激盪賺取收入的小點子,還不只一個,如下圖
另外,也有網友發現,它可以代為回覆客服信函。在協助數據工作者上,它還能夠給予產出關鍵字。或幫助開發應用的人,快速生出小教學文章等。
同時,它中文也能通。來看看下面它給大家工作面試前的建議。
ChatGPT究竟是什麼?
ChatGPT的開發者是一家專精於人工智慧的組織OpenAI,OpenAI曾經推出輸入文字便能輸出圖像的DALL-E、給定音樂風格和歌詞就可以產出音樂作品的Jukebox,以及2020年推出時震撼全球的語言模型GPT-3。
根據OpenAI的介紹,ChatGPT就和先前曾推出的「打電動機器人」OpenAI Five一樣,都是透過由人類提供回饋的增強學習(reinforcement learning)訓練而成。
增強學習的原理類似小朋友在玩電動遊戲,即使在場沒有成年人指導,幼童仍可以在不斷的試錯當中,藉著每次挑戰所獲得的正向與負向回饋,找到能夠通關的策略。
訓練ChatGPT時便是仿照上述概念,OpenAI先請模型的訓練者們同時扮演使用者和人工智慧助手(即現在的ChatGPT)的角色,創造一定數量的數據,讓機器認識到對話的基本策略。
接著,為了讓機器學到相對較佳的對話內容與模式,訓練者會扮演使用者向機器擔任的人工智慧助手發話,此時訓練者會提供建議幫助機器撰寫回答。
為了讓機器「學習」,訓練者會擷取機器撰寫的不同語句,接著「告訴」機器回答內容的品質高低。
這些線索有如「小朋友齊打交」的正向與負向回饋,機器可以藉此改善產出,並回頭更新其產生回答的策略,就這樣一步一步的離成品邁進。
當然,使用無監督的數據生成模型說來容易,但實務上的挑戰甚巨,因為訓練模型需要大的運算能力,這意味著燃燒資本。
就第一代GPT模型來說,預訓練的數據量達到約5GB,使用到的參數接近1.2億。
隔年(2019)OpenAI發表GPT-2,預訓練的數據量暴漲,直接衝高到40GB,使用到的參數更是來到15億。
OpenAI並沒有停下腳步,在2020年又釋出了GPT-3,這次的數據量翻了千倍,達到45TB,而參數量也升級到1,750億。
OpenAI並沒有公佈訓練GPT模型所投入的資金。但就深度學習企業Lambda Labs的首席科學家推測,若是利用最便宜的雲端運算服務訓練GPT-3模型,需要花上至少460萬美元、耗時355年才能訓練完成。
當OpenAI公布GPT-3以後,很快造成轟動。就像現在的ChatGPT一樣,當時有許多人利用GPT-3,打造出各種有趣的服務,例如請語言模型幫忙解析學術論文、根據描述產出網頁以及對應的程式碼、將平常使用的語言轉換成法律術語等等。
ChatGPT有何隱憂?
除了擔心老師們以後再也無法分辨作業是誰的產出之外,已經出現了人工智慧技術壟斷的相關討論。
無論是Google的BERT,或者是OpenAI的GPT,不僅頂尖科學家要投入心血,企業更要挹注大筆資源,才能打造出厲害的模型。
然而,這是個富者愈富、貧者愈貧的世界。隨著大企業開發出一個又一個新的模型,能夠像是這次ChatGPT一樣,從人們的踴躍試用中得到更多回饋,進而改進其模型,而機器學習領域又是一個殘酷的世界,只有表現好的模型才有話語權-這又回頭仰賴企業的資源,因此直到今日,能夠開發出此類巨型語言模型的企業屈指可數。
就像科技作家「演算法決定世界」的預言一樣,人工智慧也把持在少數企業手中。
這會為我們的生活帶來什麼樣的影響?是否會出現科幻小說當中的常見情節,日後人類的生活會被少數科技菁英與機器所主宰?我們必須關注人工智慧發展中的壟斷問題。
(本文出自2022.12.10《遠見》網站,小編整理增加部分內容,留存備查。)
文章標籤
全站熱搜
留言列表